
Learning to Extract Transaction Function from Requirements:
An Industrial Case on Financial Software

Lin Shi

Mingyang Li

Mingzhe Xing

Yawen Wang

(shilin,mingyang,mingzhe,yawen)@itechs.iscas.ac.cn

Laboratory for Internet Software Technologies, Institute of

Software Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China

Qing Wang

wq@iscas.ac.cn

Laboratory for Internet Software Technologies, Institute of

Software Chinese Academy of Sciences, Beijing, China

State Key Laboratory of Computer Science, Institute of

Software Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China

Xinhua Peng

Weimin Liao

Guizhen Pi

(joeyxhpeng,liaowm,p98119)@cmbchina.com

China Merchants Bank, Shenzhen, China

Haiqing Wang

wanghq@bscea.org

Beijing Software Cost Evaluation Technology Innovation

Alliance, Beijing, China

ABSTRACT
In practice, it is very important to determine the size of a proposed

software system yet to be built based on its requirements, i.e., early

in the development life cycle. The most widely used approach for

size estimation is Function Point Analysis (FPA). However, since

FPA involves human judgment, the estimation results are some

degree of subjective, and the process is labor and cost intensive. In

this paper, we propose a novel approach to automatically identify

transaction functions from textual requirements by leveraging a

set of natural language processing techniques and machine learn-

ing models. We evaluate our approach on 1,864 requirements and

104,691 transaction functions taken from 36 financial projects from

one banking industry. The results show that the contents of the

suggested transaction functions by our approach are high in qual-

ity, with low perplexity value of 8.5 and high BLEU score of 34 on

average. The types of suggested transaction functions can also be

accurately classified, with overall accuracy of 0.99 on average. Our

approach can provide reasonable suggestions that assist industrial

practitioners to identify transaction functions faster and easier.

CCS CONCEPTS
• Software and its engineering→Requirements analysis; Soft-
ware implementation planning.
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Requirements, Function Point, Machine Learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00

https://doi.org/10.1145/3368089.3417053

ACM Reference Format:
Lin Shi, Mingyang Li, Mingzhe Xing, Yawen Wang, Qing Wang, Xinhua

Peng,Weimin Liao, Guizhen Pi, andHaiqingWang. 2020. Learning to Extract

Transaction Function from Requirements: An Industrial Case on Financial

Software. In Proceedings of the 28th ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3368089.3417053

1 INTRODUCTION
In industrial practice, it is desirable to have a reliable cost estima-

tion available before software systems are actually built. One of

the most intensively used and mature approaches to estimate the

software size in the early stage is Function Point Analysis (FPA),

which has been well developed over 30 years, and also has been

adopted as international standards, e.g. ISO 20926 [2, 19, 29]. FPA

analyzes the “elementary process” of a software system from user

requirements, which is the smallest unit of activity that is meaning-

ful to the users. FPA provides a measure of size in Function Points

(FP), and the definition is: “A function point is a synthetic metric that
is comprised of the weighted totals of the inputs, outputs, inquiries,
logical files or user data groups, and interfaces belonging to an appli-
cation”[19]. Based on the counted FPs, reasonable size estimations

can be calculated using FPA, and indirect cost estimations can be

calculated.

Unfortunately, FPA has its own unsolved problems that prevent

it from being a valid measure with widespread acceptance. One

significant problem with FPA is that it needs to identify FPs from

requirements documents first. These documents are often total-

ing hundreds of pages, and the process heavily relies on human

measurers to read those documents. Another problem is that the

estimation results are some degree of subjective. Human measur-

ers need to follow a set of standard FP counting rules, which are

open to interpretation on many occasions, thus they often produce

inconsistent estimation results. Differences in the same product

may occur even in the same organization. For example, Low and
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Jeffery [30] reported that a 30-percent variance was caused within

one organization and more than a 30-percent variance was caused

across organizations.

Therefore, in order to obtain consistent estimations and reduce

costly human involvement, it is important to propose approaches

to promote the automation, effectiveness, and quality of function

points analysis. However, one of the most challenging problems

faced by such automated FPA approaches is extracting functions

from natural-language requirements. We employ an example in

Figure 1 to illustrate why it is challenging. The extracted functions

are “receive Alipay payment confirmation”, and the four words

are scattering separately in the requirement text. It is difficult to

efficiently extract functions due to three reasons. (1) The func-

tions cannot be simply treated as the part-of-speech patterns with

consecutive words from the requirement descriptions. There are

several researches focusing on the automatic concept extraction

with part-of-speech tagging and heuristic rules (i.e., adjective-noun-
noun) [24, 26, 42, 45]. These techniques can not be directly utilized

in this task because the functions are far from the pattern-based

phrases. (2) Extracting functions from requirements need to be per-

formed in compliance with rules defined in FPA methods. (3) The

documents provided for function extraction are uneven in quality

and readability since they are mostly written in natural language

by different people, which results in the extraction activity even

more difficult.

Figure 1: An example of requirement sentence classification
and the corresponding transaction function.

In this paper, we propose a novel approach to automatically iden-

tify transaction functions by understanding the natural-language

user requirements. First, we extract six categories of features for

each word in requirements, based on text parser, heuristic rules,

word embedding model, and lexical graph. Second, we train word

predictors with requirement corpus, and select the optimal one

to predict words in functions. Finally, we construct transaction

functions by combing words, ranking by perplexity, and classifying

function types. The output of our approach is a list of suggested

transaction functions extracted from the textual requirement to-

gether with their function types, which are External Inquery (EQ),

External Output (EO), or External Input (EI). The three types are

different elementary processes that reflect how the data or control

information interact with the application [19]. We evaluate our

approach on 36 financial projects taken from real banking industry.

The results show that the contents of the suggested transaction func-

tions are high in quality, with low perplexity value of 8.5 and high

BLEU score of 34 on average. The types of suggested transaction

functions can also be accurately classified, with overall accuracy of

0.99 on average.

The major contributions of this paper are as follows.

• We propose an automated solution to identify transaction

functions from textual requirements.

• We design six categories of features, as well as their calcula-

tion methods, to characterize words in requirements, acting

as foundations for advanced requirement analysis.

• We evaluate our approach on 36 financial projects taken

from real banking industry, and the results are promising.

• We share the learned lessons from deploying our approach

in the real industrial settings and expectations for researches

on automated function points analysis.

2 FPA IN FINANCIAL SOFTWARE
2.1 Financial Software in CMB
China Merchants Bank (CMB) is the largest joint-stock commercial

bank wholly owned by corporate legal entities in China, as well as

one of the top 500 companies in the world. CMB involves a large

variety of banking business areas, including debit card management,

credit card management, wealth management products, investment

advisory products, cash management, online customs tax payment,

online bill acceptance. By the end of 2019, with over 70,000 employ-

ees, CMB had set up a service network that consists of more than

1,800 branches worldwide. To support its widespread business, the

IT department of CMB develops and maintains over 500 financial

software, which involves huge budgets and employees.

Most of the financial software are transaction-oriented applica-

tions with data persistency, which are well adapted to functional

sizing. CMB has utilized FPA to estimate and measure system size

over 10 years. In addition, many other financial organizations in

China also utilize FPA methods for early cost estimation. Among

those organizations, CMB is the best pioneer to lead the progressing

of Chinese FPA industrial practice.

2.2 FP Counting Practice in CMB
Following introduces the process of applying FPA in CMB. First,

the FPA process launches when user requirements are collected

and documented. Guided by the official Function Point Counting

Practice Manual [19], product managers identify data functions

and transaction functions from user requirements. Here data func-

tion represents functionality to meet internal and external data

storage requirements, and transaction function represents the ele-

mentary process that provides functionality to the user to process

data, including external input, external output, and external query.

Specifically, data functions are domain-specific data entities that

are obviously mentioned in the requirements, while transaction

functions are highly summarized activities that are meaningful to

users, e.g. “Add a new customer”, “Report customer purchases”,

and “Change customer details”. Therefore, it will be more difficult

to summarize transaction functions than mark out data functions

from requirement texts. Moreover, transaction functions take up a

majority of all functions. As reported by IFPUG [19], nearly 80% of

the functions are the transaction ones. Thus, summarizing transac-

tion functions from requirements is the most time-consuming and

lengthy activity in FPA practices.
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Second, due to current FPA practice heavily relying on human

judgment to estimate project cost, it is essential to make sure that

the manually identified results are correct. Therefore, when the

product managers submit identified functions, the FP experts will

review their submissions and correct mistakes. We summarize the

common types of incorrect functions during the expert review. As

shown in Table 1, the most common issue is using a part of individ-

ual elementary process as a transaction function, e.g. identifying

one step “enter passwords” rather than the entire process “user

login”. Breaking the elementary process will result in budget over-

estimate. The second most common issue is duplicate functions.

The third most common issue is identifying elementary process or

data entity that is meaningless to users.

Third, with the functions that have been approved by experts,

the CMB experts put the number of functions into a pre-defined

formulation guided by official Function Point Counting Practice

Manual [19] to calculate the adjusted function points, and finally

the budget and schedule.

In the FP process, CMB suffers from subjective deviations caused

by human judgment and expensive expert involvement. Therefore,

an automated solution to identify FPs is badly desired in the Banking

industry, such as CMB, that needs to develop and maintain a large

scale of financial software.

Table 1: Common Issue Types in Function Review

Issue Type Percentage
Breaking elementary process 38.38%

Duplicate 28.62%

Meaningless to users 20.54%

Misclassification of transaction functions 6.57%

Missing functions 4.55%

Incorrect data function 1.35%

3 RELATEDWORK
Due to the significant challenges in understanding natural-language

requirements, very little research has addressed the automated

extraction of functions from textual requirements. Adem et al. [1]

proposed a rule-based approach to extract function points from

requirements that are written in the goal and scenario model, e.g.

“verb + target + direction + way”, however, applying this method

requires modeling free-format requirements into the goal-scenario

model, which might be more time-consuming than the standard

counting procedure. Thus, it is not practical to the software industry

with large volume of projects. To overcome that issue, we propose a

learning-based approach that can automatically extract transaction

functions from free-format requirements text.

Several studies have investigated the automation of FP mea-

surement from design specifications and source code. For example,

Pow-Sang et al. [38] identified function point logic files from UML

class diagrams that made use of association, composition, gener-

alization, and association-class relationships. Uemura et al. [44]

proposed a series of function-point analysis measurement rules us-

ing design specifications based on the Unified Modelling Language

(UML) and described a function-point measurement tool, whose

inputs are design specifications developed on Rational Rose. Irawati

et al. [22] provided mapping rules between function point calcu-

lation and design documentation by referring to the information

of Use Case Diagram and Class Diagram and associations between

them. Lamma et al. [28] presented a tool for measuring FP from

Entity Relationship (ER) diagrams and a Data Flow Diagrams (DFD).

Besides design specifications, researchers also explored the automa-

tion of FP measurement from source code. For example, Edagawa

and Akaike et al. [15] proposed a method to automatically identify

data and transaction functions from Web applications using static

code analysis. Ali SAG and Tarhan [41] derived UML sequence Dia-

grams from functional execution traces at runtime with the help of

AspectJ technology, and utilized it to measure the functional size.

Kusumoto et al. [27] proposed measurement rules to count data

and transaction functions for object-oriented program based on IF-

PUG method and examining the method to practical Java programs.

They reported that although they got similar number of data and

transaction functions, disagreement on classification of functions

still existed between the tool and the specialist.

Existing automated FPA studies mainly targeted towards design

specifications and source code artifacts, while very little research

has addressed the automated extraction of functions from textual

requirements. Since learning-based approaches have gain signif-

icant success in the field of NLP, we utilize such techniques to

automatically extract transaction functions from requirements text,

which can facilitate the automatic estimation of the systems size in

the early stage.

4 APPROACH
Our approach is inspired by the keyphrase extraction approaches in

NLP, which generally consist of three main procedures: generating

candidate phrases, building the model, and predicting keyphrases

[34]. Extracting FP can be divided into two procedures. First, we

extract words from requirements, and then we construct FP phrases.

Specifically, the proposed approach consists of three main steps

(Figure 2): (1) extract six categories of features for each word in

requirements, based on text parser, heuristic rules, word embedding

model, and lexical graph; (2) predict words that will appear in

transaction functions by training a word predictor; and (3) construct

transaction functions by combing words, ranking in perplexity, and

classifying function types.

4.1 Extract Features
By analyzing the words in user requirements, we consider features

indicating lexical characteristics, syntactic characteristics, semantic

characteristics, and historical records could contribute to predict

functions in requirements descriptions. Therefore, we define six

categories of features for words: Term Features, Location Features,

Frequency Features, History Features, Representative Features, and

Importance Features as shown in Table 2. Here we introduce the

six categories of features:

Term Features (TERM) describe the basic linguistic characteristics
of each word in one requirement. In this study, we use Part-of-

speech tags and universal dependencies as term features (4.1.1).

Location Features (LOC) focus on the positions of the words

inside one requirement. First, we utilize a set of heuristic rules to

classify requirement sentences into ‘want’ or ‘explanation’ category
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Figure 2: The approach overview.

(4.1.2). Then we define three features,𝑊𝑆 , 𝐸𝑆 , and 𝑂𝑁 , based on

the sentence that the given word belongs to.𝑊𝑆 and 𝐸𝑆 denote

whether the word appears in ‘want’ or ‘explanation’ sentences

respectively. 𝑂𝑁 denotes the order number of the first sentence

that the word appears in.

Frequency Features (FREQ) reflect the term frequency in sentence

level and requirement level, including 𝑇𝐹 , 𝐼𝐷𝐹 ,𝑊𝐹 , and 𝐸𝐹 . 𝑇𝐹 is

term frequency in the requirements, and 𝐼𝐷𝐹 is the inverse docu-

ment frequency in the project scope.𝑊𝐹 and 𝐸𝐹 denote the term

frequency in ‘want’ or ‘explanation’ sentences.

History Features (HIS) indicate whether the word is frequently

used in historical functions, including 𝐹𝐻 and 𝑆𝐹𝐻 . 𝐹𝐻 denotes

the word frequency in history functions. 𝑆𝐹𝐻 enlarges the basic

term frequency of the word with its synonyms by utilizing word

embedding techniques [17] (4.1.3).

Representative Features (REP) illustrate the distance between the

given word and the root nouns/verbs extracted from the ‘want’

sentences: the distance in the syntax tree (𝐷𝐻𝑉 ), and the semantic

distance (𝑆𝑉 , 𝑆𝑁 , and 𝑆𝑊 ).

Importance Features (IMP) are calculated from a lexical graph of

requirement words by utilizing text summarization techniques and

centrality measurements (4.1.4). We apply two text summarization

techniques, PageRank and TextRank, to provide scores for words

(𝑃𝑅 and 𝑇𝑅𝑆), as well as four centrality measurements for the lex-

ical graph: Degree Centrality (𝐷𝐶), Betweenness Centrality (𝐵𝐶),

Closeness Centrality (𝐶𝐶), and Eigenvector Centrality (𝐸𝐶).

We utilize four techniques to automatically calculate the six cate-

gories of features: (1) text parser to calculate the Term features and

Frequency features; (2) heuristic-rule based sentence classification

to support Location and Frequency features; (3) word-embedding

based similarity to support History and Representative features; and
(4) word-concurrence lexical graph for Importance features.

4.1.1 Text Parser. We implement an automated text parsing tool

that integrates with the Stanford NLP parser [8] to process the

textual requirements. We directly obtain the POSTAG [43] and

DEPREL [11] from Stanford parser. The POSTAG reflects parts of

speech to each word, such as noun, verb, adjective, etc. The DEPREL

denotes the grammatical relations between individual words, such

as nominal subject, direct object, and auxiliary. The text parser also

calculates TF and IDF when processing the textual requirements

based on the fundamental definition of the two metrics [25].

4.1.2 Heuristic-Rule Based Sentence Classification. In CMB, user

requirements are written in free-format natural language, and usu-

ally consist of user expectations and detail explanations. As user

expectations briefly summarize what the user wants from the sys-

tem, the sentences expressing expectations might imply transaction

functions that summarize system functionalities. Besides the user

expectations, other sentences are considered as detail explanations

in this study.

In order to distinguish the two types of sentences, we utilize

the heuristic linguistic rules provided by Di Sorbe et al. [14] for

discovering requirements. Considering the expressing habits in

the CMB settings, we select eight heuristic rules from Di Sorbe‘s

research, and add a new rule(#9) for CMB as listed below.

(1) All [someone] needs are [something]

(2) [someone] would love/like to use [something]

(3) [someone] wants/likes to have/use [something]

(4) It would be [modal] to have [something]

(5) [someone] expects [something] to work

(6) [someone] thinks [something] would be [modal] to have

[something]

(7) [someone] thinks [something] need [verb]

(8) [something] should/could support [something]

(9) As [role], I wish/want [something]

We classify sentences that match the nine rules as ‘want’, and

other sentences as ‘explanation’. Figure 1 shows an example of re-

quirement sentence classification. We can see that, this requirement

contains three sentences. The first one matches with rule #9, thus

it is classified as ‘want’. The other two are detailed explanations

about how the system behave, and are classified as ‘explanation’.

We manually inspect 100 sentences, and 98% are correctly classified.

4.1.3 Word-Embedding Based Similarity. When calculating the se-

mantic similarity for the above features, we use a word-embedding

model [17] trained by all the text, including 1,864 textual require-

ments and 107,256 (104,691+2,565) history functions from the in-

dustrial repository. We conduct word segmentation and remove

stop-words (i.e., “on”, “the”, etc.) to reduce noise. After that, we

obtain a sequence of words for each sentence. We then use the

publicly available software
1
to learn the word embedding model.

We transform each word into a 𝑑-dimensional vector, where 𝑑 is

1
https://github.com/hankcs/HanLP/wiki/word2vec
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Table 2: Features for words in requirement documents

Feature Type Feature Name Description Value Range

Term

POSTAG The result of Part-Of-Speech Tagger on the word {Categories}

DEPREL The universal Stanford dependency relation to the word {Categories}

Location

WS Whether the word appear in the ‘want’ sentences {True, False}

ES Whether the word appear in the ‘explanation’ sentences {True, False}

ON The order number of the sentence that the word located in {Positive Numbers}

Frequency

TF The term frequency of the word in the requirement (0, 1]

IDF the inverse document frequency of the word among all the requirements in one product {Positive Numbers}

WF The term frequency of the word in the ‘want’ sentences (0, 1]

EF The term frequency of the word in the ‘explanation’ sentences (0, 1]

History

FH The term frequency of the word among all the words in the historical transaction functions (0, 1]

SFH The term frequency of the word and its similar words in the historical transaction functions (0, 1]

Representative

DHV The average of shortest path from the word to the root verbs in the ‘want’ sentences {Positive Numbers}

SV The average similarity between the word and root verbs in the ‘want’ sentences (0, 1]

SN The average similarity between the word and root nouns in the ‘want’ sentences (0, 1]

SW The number of its similar words in the ‘want’ sentences {Positive Numbers}

Importance

DC Degree Centrality is the number of weighted edges incident upon a word vertex [4] {Positive Numbers}

BC The Betweenness Centrality is the number of shortest paths traversing that word vertex [5] [0, 1]

CC The Closeness Centrality is a measure of the proximity to the rest of the vertices in the network [9] (0, 1]

EC The Eigenvector Centrality is a measure of the importance of a word vertex in the network [3] {Positive Numbers}

PR The scores calculated with Page Rank Algorithm [33] [0,10]

TRS The scores calculated with the TextRank Algorithm [32] (0,1)

set to 100 as suggested in previous studies [46, 47]. The distance of

two word vectors is their semantic similarity.

4.1.4 Lexical Graph for Word-Concurrence. Existing text summa-

rization techniques utilize a lexical graph to extract important words

from natural language texts, e.g. PageRank [33] and TextRank [32].

In this study, we build a word-concurrence graph for all non-stop

words in requirements. Each node in the graph corresponds to

a unique word in the requirements. To construct edges between

nodes, we tokenize each sentence in the requirements into a se-

quence of words. Then, we build a window (𝑤𝑖−𝑛 , ...,𝑤𝑖−1,𝑤𝑖 ,𝑤𝑖+1,
..., 𝑤𝑖+𝑛) for each word in the sequence, where 𝑤𝑛 is the current

word and𝑤𝑖−𝑛 ,𝑤𝑖+𝑛 are the 𝑛𝑡ℎ words before and after𝑤𝑛 respec-

tively. After that, we add edges between𝑤𝑛 and other words. With

the lexical graph, the word importance is measured by calculating

its centrality measurements.

4.2 Predict Words in Transaction Functions
Comparing with the corresponding actual functions, we can auto-

matically obtain positive and negative labels to each word in the

requirement according to whether they are included in the actual

functions. With the features that characterizing words in require-

ments, we then select several commonly-used supervised machine

learning methods to train corresponding models that can predict

whether a given word will appear in the corresponding transaction

functions or not. After comparing the performances of the selected

methods, our approach chooses the optimal model with the highest

performance as our word predictor.

In some cases, one word may appear multiple times in one re-

quirement. Although these words are identical in textual format,

their values of the six categories of features may be different, for

example, the same words may have different locations in require-

ments or different results in the syntax tree. Thus the word predictor

might give different results for the same words. In order to obtain

a unified classification result, we further reconcile the word predic-

tor by conducting a combination strategy that all the same words

will be predicted to be positive on condition that there exists one

positive predicting result. Given a word 𝑤 , let 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}
be the set of prediction results of all the 𝑛 appearances of word𝑤 .

Then the reconciled prediction result 𝑓 (𝑤) is defined as below:

𝑓 (𝑤) =
{
𝑇𝑟𝑢𝑒, ∃ 𝑥 ⊂ 𝑃, 𝑥 = 𝑇𝑟𝑢𝑒

𝐹𝑎𝑙𝑠𝑒
(1)

4.3 Construct Transaction Functions
After we obtain the list of words that are predicted to appear in the

corresponding transaction functions, we then construct these words

into suggested transaction functions by three steps: combine words,

rank in perplexity, and classify function types. Alg. 1 demonstrates

the pseudocode of constructing transaction functions.

4.3.1 Combine Words. We define the format of function as “[Verb]

+ [Compound Noun]”, where the compound nouns describe the

detailed subjects, and the verb describes the action of the functions,

e.g. “Display employee information”. As shown in the COMBINE

procedure in Alg. 1, for each verb and noun in the predicting words,

we select its related noun or adjective in the corresponding sen-

tences according to dobj DEPREL
2
(line 2-11). Then we obtain the

compound noun, and combine the verb with the compound noun

as one transaction function. Finally, we remove the duplicate com-

binations and output the functions (line 15).

4.3.2 Rank by Perplexity. To suggest functions with good readabil-

ity in high priority for early review, we utilize a N-gram language

model to rank the combined results. A N-gram language model

can learn to predict the Perplexity of a sequence of words, thus

can indicate the readability of a given phrase against the training

corpus [7]. We train the language model based on 104,691 func-

tions taken from CMB. We utilize a public library
3
to build the

language model𝑚𝑜𝑑𝑒𝑙 . As shown in the RANK procedure in Alg. 1,

for each combined result 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛, we calculate its perplexity score:

𝑚𝑜𝑑𝑒𝑙 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛). Then we rank the suggestions by the perplexity,

and suggest functions with low perplexity in priority.

2
dobj is the noun phrase which is the (accusative) object of the verb

3
https://github.com/adampauls/berkeleylm
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4.3.3 Classify Function Types. In the last step, we determine the

three function types (EI, EO, or EQ) for each combined result. Four

common text classification methods are considered for classifying

the function types, i.e. Naive Bayes (NB), Logistic Regression (LR),

J48, and Random Forest (RF). These four classifiers are also widely

used in the previous studies [20, 21, 23]. We use the TF-IDF method

to represent each word in functions, in which the frequencies of

words are multiplied by their inverse document-frequency. We train

these classifiers by the transaction function corpus. We select the

optimal one with the highest performance as our function-type

classifier (𝑚𝑜𝑑𝑒𝑙). As shown in the CLASSIFY procedure in Alg. 1,

we add the predicted function type to the combined transaction

function𝑚𝑜𝑑𝑒𝑙 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛).

Algorithm 1 Construct Transaction Functions

1: procedure combine words(List words)

2: for each String 𝑤𝑜𝑟𝑑 : 𝑤𝑜𝑟𝑑𝑠 do
3: 𝑠 ← find sentence which contains the word

4: if 𝑃𝑂𝑆 (𝑤𝑜𝑟𝑑) is verb then
5: 𝑐𝑜𝑟𝑒𝑁𝑜𝑢𝑛 ← noun whose DEPREL is dobj in 𝑠

6: 𝑐𝑝𝑁𝑜𝑢𝑛 ← connect 𝑐𝑜𝑟𝑒𝑁𝑜𝑢𝑛 with compound words in 𝑠

7: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑 (𝑤𝑜𝑟𝑑 + 𝑐𝑝𝑁𝑜𝑢𝑛)
8: end if
9: if 𝑃𝑂𝑆 (𝑤𝑜𝑟𝑑) is noun then
10: 𝑐𝑝𝑁𝑜𝑢𝑛 ← connect 𝑤𝑜𝑟𝑑 with words whose DEPREL is compound

in 𝑠

11: 𝑣𝑒𝑟𝑏 ← verb whose DEPREL is dobj in 𝑠

12: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑 (𝑣𝑒𝑟𝑏 + 𝑐𝑝𝑁𝑜𝑢𝑛)
13: end if
14: end for
15: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑑𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)
16: return 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

17: end procedure
1: procedure rank(List functions, langModel model)

2: for String 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 : 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 do
3: 𝑠𝑐𝑜𝑟𝑒𝐿𝑖𝑠𝑡 ← (𝑚𝑜𝑑𝑒𝑙 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛), 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
4: end for
5: rank 𝑠𝑐𝑜𝑟𝑒𝐿𝑖𝑠𝑡 by perplexity

6: return 𝑠𝑐𝑜𝑟𝑒𝐿𝑖𝑠𝑡 .𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛

7: end procedure
1: procedure classify(List newfunctions, classifyModel model)

2: for String 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 : 𝑛𝑒𝑤𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 do
3: 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑇 𝑦𝑝𝑒𝑠.𝑎𝑑𝑑 (𝑚𝑜𝑑𝑒𝑙 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛))
4: end for
5: return 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑇 𝑦𝑝𝑒𝑠

6: end procedure

5 EXPERIMENTAL DESIGN
Our evaluation is guided by the following research questions:

RQ1: To what extent can the word predictor identify the
words in the transaction functions? We compare and investi-

gate the performances of the function-word predictors trained by

different supervised machine learning approaches on the industrial

requirement dataset.

RQ2: How effective is our approach in extracting transac-
tion functions from requirements? To demonstrate the effec-

tiveness of the proposed approach, we evaluate the correctness of

the content of extracted functions in terms of BLEU, perplexity, and

validity ratio, by comparing the text of extracted functions with

the text of ground-truth functions that are manually extracted by

human experts.

RQ3: How well can our approach correctly classify the
types of transaction functions? We compare and investigate

the performances of the function-type classifiers that are trained by

different supervised machine learning approaches on the industrial

function dataset.

5.1 Data Collection
Our experimental data is collected from the repositories of the IT

department in CMB. We collaborate with the project management

department of CMB, and help them to increase the level of automa-

tion in software effort estimation, which reduces expensive labor

costs and difficulties in applying FPA methods. Our evaluation uses

the following two datasets.

Table 3: Two Experiment Datasets

(a) Requirement-function Corpus

Time Span 2019.1-2019.12

#Req 1864

#Words 285543

#Projects 36

#Tranaction Functions 2565

(b) Transaction Function Corpus

Time Span 2010.1-2018.12

#EI 53237

#EQ 17131

#EO 34323

Total 104691

Requirement-functionCorpus contains textual requirements

and their corresponding functions, which are used to evaluate RQ1

and RQ2. Because the industry did not record the relationship be-

tween requirements and their corresponding functions until 2019,

we select all the finished 36 financial systems from CMB repository

from January 2019 to December 2019 as our studied projects. Re-

quirements of these projects are all written in natural language, and

we can retrieve the corresponding actual functions for each require-

ment in the corpus. First, we exclude requirements that are low in

quality from three aspects: (1) The requirements that are incomplete.

(2) The requirements that link to abnormal numbers of functions.

In this study, we found that almost 90% requirements have less than

10 functions, and only 10% have more than 10 functions. There-

fore, we consider requirements with more than 10 functions to be

outliers. (3) The requirements with low readability that are hard

to understand. Second, we retrieve the corresponding actual func-

tions related with each requirement from the requirement corpus

as ground-truth functions. To ensure the quality and validity of

the ground-truth functions, we select the trustful ones according

to three criteria: (1) manually extracted functions that have been

double-validated by FPA experts to be correct; (2) the relationship

between functions and corresponding requirements are explicitly

designated; (3) 90% words of the related functions have appeared

in the requirement texts. In total, we collect 1,864 requirements, in-

volving 2,565 transaction functions and 285,543 words. The detailed

information is shown in Table 3(a).

Transaction Function Corpus contains all the transaction

functions in the industrial case from 2010.1 to 2018.12 (9 years). It is

used to train and evaluate the function-type classifiers (RQ3). This

corpus also acts as an important organizational asset that supports

for new financial system requirement analysis and effort estimation.

As shown in Table 3(b), we collect 104,691 transaction functions,

including 53,237 EIs, 17,131 EOs, and 34,323 EQs.
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5.2 Evaluation Measurements
We employ different measurements for evaluating suggested trans-

action functions.

Precision,Recall, F1,Accuracy, andAUC are commonly used

measurements for performance assessment in classification tasks

[39].Accuracy is the number of correct predictions divided by the to-

tal number of predictions, which can reflect the overall performance

of multi-classification prediction. AUC (Area Under roc Curve) is

the area of the two-dimensional graph in which false positive rate

is plotted on the X axis, and true positive rate is plotted on the Y

axis [16]. AUC can avoid performance inflation when evaluating

on imbalanced data. The AUC value varies between 0 and 1, and

higher values indicate better performance.

Perplexity [6] measures how well a model predicts samples.

Low (e.g. single digit) perplexity values indicate the model is good at

predicting a given sequence, and the lower the better. The perplexity

score of a sentence can be calculated by the following equation:

𝑃𝑃𝐿(𝑠) = 2
− 1

𝑁

∑
log(𝑝 (𝑤𝑖 ))

(2)

Where 𝑁 is the length of sentence, 𝑝 (𝑤𝑖 ) is the score of 𝑖𝑡ℎ n-gram

in sentence, and

∑
log(𝑝 (𝑤𝑖 )) is the log of n-gram language model

score of a sentence.

BLEU is a well-known and popular metric for automatically

evaluating the quality of machine-translated sentences [35]. It has

been shown to correlate well with human judgments [10, 18]. BLEU

calculates how well a given sequence is matched with an expected

sequence in terms of the actual tokens and their ordering using

an n-gram model. We apply BLEU to evaluate the suggested trans-

action functions. The output of the BLEU metric is a number be-

tween 1–100. The higher values denote the better matches between

suggested functions and actual functions. For natural language

translations, BLEU scores of 25–40 are considered high scores [35].

Validity Ratio. A suggested transaction function is considered

valid if the BLEU value between the given function and its expected

function is over 25. In this study, we define the percentage of valid

suggested functions over the total number of suggested functions

as Validity Ratio.
MAP@N (Mean Average Precision) and Recall@N are widely-

used for evaluating the quality of ranked results in text retrieval

[31]. MAP@N considers whether all of the relevant items tend to

get ranked highly in the first 𝑁 𝑡ℎ
suggestions, where Recall@N

considers to what degree the ground-truth items could be retrieved.

In this study, we calculate the MAP@5 and Recall@5 of the ranked

functions for each requirement, according to the valid functions

which are over BLEU 25.

5.3 Evaluation Design
Experiment I (RQ1). When building the word predictor, we se-

lect four supervised machine learning (ML) approaches including

Naive Bayes, Logistic Regression, J48, and Random Forest [40] to

train the models since they are the popular and representative

algorithms that are widely used in natural language processing

tasks to solve a binary classification problem. We choose the pa-

rameter set of Random Forest which uses the adaptive depth of

decision trees, and the number of features in a single decision tree

is log
2
(#𝑡𝑜𝑡𝑎𝑙_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) +1. We train the Random Forest model for

700 epochs until converging. We optimize the hyper-parameters of

four ML approaches respectively and carry out a number of experi-

ments. After comparing the performances of the four ML models,

we select the best model with the highest performance as the final

decision for the word predictor. To make sure that all the words in

one requirement are only used either in train dataset or test dataset,

we conduct the 10-fold cross validation on the requirement level.

Specifically, we first randomly partition all the requirements into

10 parts. One single part is retained as the testing data, and the rest

9 parts are used as the training data. Then we repeat 10 times.

Experiment II (RQ2). The goal of experiment II is to evaluate

the correctness of the contents of the extracted functions, in terms

of BLEU, perplexity, validity ratio, MAP@5, and Recall@5. To eval-

uate the qualities of suggested functions, we treat the ground truth

functions as reference set and calculate the BLEU score of each

suggestion. We apply Laplace smoothing to avoid zero-division

when calculating BLEU score. Since the perplexity score of a sen-

tence need to be derived by n-gram language model score, we train

a n-gram language model on the transaction function corpus as

illustrated in Table 3(b). Then we calculate the perplexity score

based on the length and 𝑁 − 𝑔𝑟𝑎𝑚 score.

Experiment III (RQ3). The goal of experiment III is to evaluate

the correctness of the classified types for the extracted functions.

First, we conduct the 10-fold cross validation on the transaction

function corpus, which contains 104,691 history transaction func-

tions. We use the same four supervised ML approaches as stated

in Experiment I (i.e., NB, LR, RF, and J48). Second, we train the

four models on the nine-year transaction function corpus (2010.1-

2018.12), and then test on requirement-function corpus (2019.1-

2019.12). We evaluate the correctness of the classified function

types in terms of precision, recall, F1-score, and overall accuracy.

6 RESULTS AND ANALYSIS
6.1 Effectiveness of Word Predictor (RQ1)
Figure 3 demonstrates the performances of the four word predictors

with different ML methods over the 36 projects. The short lines

are medians. We can see that the medians of the RF model are the

highest in terms of Precision, Recall, F1, and AUC, which indicates

that the RF model can work quite well on predicting whether words

will be included in the functions than other methods. Therefore,

we select the Random Forest model as our final word predictor.

The average of precision, recall, and F1-score of the RF model are

94.9%, 88.6%, and 91.6% respectively. The overall accuracy is 0.94 on

average among the 36 projects. We consider the performances of

the word predictor are relatively good on account of utilizing multi-

dimensional features and word embedding techniques. In addition,

the model trains at a speed of about 500 requirements/40 minutes

on a standard company server, which uses 8G RAM and 4 cores

CPU. Thus, it is efficient and acceptable in an industry scenario.

Answers to RQ1: The word predictor can effectively predict

whether the words in a requirement will be included in its corre-

sponding transaction functions or not. The Random Forest approach

significantly outperforms Naive Bayes, Logistic Regression, and

J48. On average, the RF-based word predictor can reach 0.94 of the

overall accuracy, which is a promising result.
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Figure 3: Performance comparison among ML approaches

6.2 Quality of Function Content (RQ2)
Figure 4(a) demonstrates the distribution of average BLEU values

of the 36 projects. We can see that, most average BLEU values are

between 30 and 40, with 34 of mean and 6 of standard deviation.

Recall that high BLEU scores (i.e., 25-40) are desired for the task, the

suggested transaction functions are highly similar to ground truth

functions that are manually extracted by human experts. Figure

4(b) illustrates the distribution of average perplexity values. We

can see that, most average perplexity values are between 7 and

10, with 8.48 of mean and 1.52 of standard deviation. Recall that

low perplexity (i.e., single digits) is desired, thus the suggested

transaction functions have good clarity, and are suitable for further

reading and reviewing. Furthermore, we investigate the distribution

of BLEU values on individual projects, as shown in Figure 5. We

can see that all the medians are above 25 of BLEU, and most of

suggested functions are also above 25, which indicates that the

suggested functions have good matches with the actual functions

among different projects.

Figure 6 shows the number of suggestions and validity ratios

on each project. The average number of suggested functions is

121, and the average validity ratio is 66%. Most projects (26/36)

have more than 60% valid suggestions. By further investigating the

suggested functions for the 10 projects that are less than 60%, we

find that, these projects are mainly related to data management

systems, and heavily use high-appearance words in their functions,

(a)

(b)

Figure 4: Distribution of BLEU and Perplexity over projects

Figure 5: Distribution of BLEU on individual projects

Figure 6: Distribution of validity ratios and total suggestions
over 36 projects

such as “report” and “data”. In such a case, although the word

predictor can accurately predict most of the words in the ground-

truth functions, the combine-word activity retrieves all the dobj

DEPREL for those high-appearance words. Thus, many redundant

suggestions are introduced for those high-appearance words in

the 10 projects, which makes the validity ratios become lower. To

further improve the percentage of valid suggestions, we plan to

improve the combine-word activity by retrieving limited DEPREL

instead of all DEPREL.

Figure 7 demonstrates the value of MAP@5 and Recall@5 of the
suggested functions at project level. Nearly all the projects can

reach a relatively good level of performance on Recall@5, and the

average Recall@5 is 0.94. Meanwhile, these projects also perform

well in term of MAP@5. Most of the projects (34/36) can reach 0.5

on MAP@5, and the average MAP@5 is 0.6 among the 36 projects.

Answers to RQ2: The contents of the transaction functions

suggested by our approach are high in quality, in terms of accurate

sequences, good clarity, and valid suggestions. Most of relevant

functions could be recalled, and the recalled functions are suggested

in priority. Specifically, our approach reaches a low perplexity value

of 8.5 and high BLEU scores of 34 on average. Among all the sug-

gested transaction functions, 66% are valid on average. The average

MAP@5 and Recall@5 are 0.6 and 0.94 respectively.
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Figure 7: The MAP@5 and Recall@5 of all the projects

6.3 Correctness of Function Type (RQ3)

Table 4: Performances of function-type classifiers on trans-
action function corpus

Classifier EI EO EQ Acc.P R F1 P R F1 P R F1
NB 79% 63% 70% 29% 65% 40% 74% 52% 61% 0.59

LR 81% 90% 86% 59% 41% 48% 84% 84% 84% 0.80

RF 84% 94% 89% 78% 55% 64% 88% 86% 87% 0.85
J48 85% 91% 88% 67% 54% 60% 87% 87% 87% 0.83

Table 5: Performances of function-type classifiers on
requirement-function corpus

Classifier EI EO EQ Acc.P R F1 P R F1 P R F1
NB 83% 70% 76% 32% 66% 43% 78% 60% 68% 0.66

LR 87% 94% 90% 74% 48% 58% 87% 89% 88% 0.85

RF 98% 100% 99% 99% 95% 97% 99% 99% 99% 0.99
J48 94% 97% 96% 91% 75% 82% 93% 95% 94% 0.93

Table 4 demonstrates the performances of different text classifica-

tion approaches on classifying history transaction functions corpus

(Table 3(b)). We can see that the random forest approach reaches

the highest performances in most of the cases. It can achieve 0.85

of overall accuracy (Acc.), and F1 score of 89%, 64%, 87% respec-

tively. Table 5 shows the performances of function-type classifier

on requirement-function corpus (Table 3(a)). We can see that the

optimal RF model also performs best on the requirement-function

corpus. It could achieve quite good performances with the accuracy

of 0.99, F1 score of 99%, 97%, and 99% for EI, EO, and EQ respectively.

The promising results confirm that our approach could provide an

accurate classification of the three transaction-function types.

Answers to RQ3: Our approach can automatically train four

ML models, and select the optimal RF model to correctly classify

the three types of transaction functions. On average, the RF model

achieves overall accuracy of 0.99, F1 score of 99%, 97%, and 99% for

EI, EO, and EQ respectively.

7 DISCUSSIONS
7.1 Usability
We develop a tool HyFinder to support organizations to apply the

proposed approach in an end-to-end way based on the following

functionalities. (1) Automated feature extraction. HyFinder can

build the word embedding model and lexical graph automatically,

as long as the organization sets up the corresponding text corpus.

For each word, HyFinder can extract its features automatically.

(2) Automated ML models training and selection. Some learning

algorithms make particular assumptions about the structure of the

data or the desired results. If the organization can find one that fits

their needs, it can give more useful results, more accurate predic-

tions, or faster training times [13]. Therefore, HyFinder embeds

four ML models, i.e., NB, LR, J48, and RF, and can automatically

conduct experiments to select the optimal one as the word pre-

dictor and function-type classifier. (3) Automated recommend and

rank functions. HyFinder can automatically train the statistic lan-

guage model, and recommend ranked results based on readability.

In addition, with the accumulation of new training samples over

time, HyFinder supports iteratively improvement by re-training

the model with the final accepted functions from feedback.

7.2 Applicability
HyFinder has been integrated into the daily business of the FPA

team in CMB. For each project, when a new list of requirements is

established, our tool will parse each requirement and recommend

a list of functions. By using HyFinder, FPA experts can directly

select the functions from the recommended list instead of extracting

them from the requirements manually, which largely reduces the

effort and difficulty of applying FPA. If the FPA experts consider

the recommended functions are incomplete or inappropriate, they

can browse the corresponding requirements to retrieve the correct

functions back. Meanwhile, HyFinder collects the above manual

corrections as feedback for future improvements. To the best of our

knowledge, this work is the first solution to automatically extract

functions from requirements that are written in natural language.

It is quite practically useful to improve automation when applying

FPA method among software organizations. Moreover, this work

provides opportunities to simplify and summarize complicated

requirements into functions.

7.3 Benefits
There are two major benefits when using the proposed approach

to automatically extract functions. First, the recommended func-

tions can help preserve the extracted functions to be objective and
unbiased. When extracting functions manually, the results might

vary from individual to individual according to their understand-

ing level towards the requirements and the FPA methods, e.g. a

30-percent variance was caused within one organization [30]. The

subjectivity and personal bias can be alleviated if providing them

the automatically recommended functions. Second, the automated

function extraction approach can reduce the amount of manual
work. Extracting functions from textual requirements is an expen-

sive task, especially when the newly incoming requirements are

large in size. In section 6, we can see that most suggested functions
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are valid and readable, together with accurate function-type predic-

tions. HyFinder can make them conduct FPA methods faster and

reduce their amount of manual work. Especially for large organiza-

tions that use FPA methods to schedule project budges or appraise

team contributions, this approach would be very useful for largely

reducing their expensive manual work on functions extraction.

7.4 Lessons Learned
Importing domain-specific dictionaries. In the proposed ap-

proach, we leverage the Stanford NLP parser when analyzing the

textual requirements. In the beginning, we use the Stanford parser

trained from public news corpus. We note that a large number of

sentences are incorrectly analyzed by the Stanford parser. After

analyzing the mistakes, we found that most mistakes are related to

domain-specific words that cannot be correctly identified by the

parser. Therefore, we help CMB build their own domain-specific

dictionaries based on new word detection technologies [37]. By

integrating the domain-specific dictionaries into the parser, most

words can be correctly analyzed. The established domain-specific

dictionaries also benefit future NLP analysis tasks in CMB.

Performance consideration and support for big data. Typ-
ically, parsing sentences and outputting their semantic analysis

results by using public NLP libraries cost high on CPU and memory,

which results in low performance of the proposed approach. We

encountered a performance issue when the size of requirements

over 20,000. The tool will spend more than 24 hours to build models

based on the dataset. We resolved the issue by refactoring the fea-

ture extraction methods and using multiple threads technology. In

the future, we plan to use map-reduce [12] technology to improve

the performance of our platform and support analyzing big data.

7.5 Expectations for Automated FPA
After interviewing the staff in CMB, we summarize the following

research questions on automated requirement analysis that are

desired by FPA practitioners.

How to automatically extract functions from traditional software
system prototypes? Although we resolved the automated function

extraction from requirements, there are still a large number of

projects using system prototypes that are difficult to extract func-

tions. How to automatically extract functions from those artifacts

is still a big challenge.

How to predict the final size of functions based on product/project
information and textual artifacts in the early phrase? Our approach
addresses the first step of function counting which is automated

recommendation functions based on requirements. Given the data

and functions, practitioners need to analyze the complexity of func-

tions and system characteristics to estimate the final size or budges

for the projects, which is a complicated task. It will be a great help

if researchers can work out a prediction model that can analyze

product/project information and textual artifacts in the early phase,

and predict the final results of the functions counting.

How to automatically review functions extracted based on rules of
FPA methods? For large organizations that use functions to assess

the contributions of IT teams, the functions extracted by the IT team

members themselves are likely to be overestimated or incorrect.

There is a need for an automated review approach on functions

that can prompt those inappropriate functions, such as duplicated

functions, misclassified functions on types, and so on.

7.6 Threats to Validity
External Validity. The external threats relate to the generalizabil-
ity of the proposed approach. First, we experimented on 36 projects

taken from the real banking industry. The results may be different

in other organizations. However, the variety of projects and the size

of data relatively reduce this threat. Moreover, by training models

with their own data, the proposed approach could also be applicable

and effective to other organizations.

Internal Validity. The internal threats relate to experimental

errors and biases. In this work, we use the functions extracted from

requirements by product managers, who have been well-trained to

apply FPA, as ground truth to evaluate our approach. The functions

are subject to mistakes. However, we adopt ground truth functions

that have been double-inspected by FPA experts. The threat of

internal validity can be largely alleviated.

Construct Validity. The construct threats relate to suitability

of evaluation metrics. The threat lies in the metrics of assessing

whether the automated functions are semantically correct. To alle-

viate that threat, we adopt BLEU, which is one of the most popular

measurements to claim a high correlation with human judgments of

quality [36], to measure the similarity between two functions. We

assume that the functions are valid if the value of BLEU is over 0.25.

We randomly select 200 suggested functions and the corresponding

actual functions. We employ two FPA experts in CMB, they both

confirmed that 81% of them are correctly determined by using BLEU

0.25. As BLEU can determine the similarity appropriately, there are

few threats to construct validity.

8 CONCLUSION AND FUTUREWORK
This paper proposed a novel solution to extract functions from

textual requirements. Our approach is to train a classifier that can

predict whether a given word in a requirement will be included in

its transaction functions or not, and then constructing the predicted

words into reasonable key phrases as the recommended transac-

tion functions. We leverage a set of natural language processing

techniques such as lexical graph, semantic analysis, word embed-

ding, statistic language model, and text classification to provide the

solution. We build the word-embedding, language model, and text

classifier based on 104,691 historical functions taken from a real in-

dustry repository, and conduct case studies on 1,864 requirements

from 36 projects. The results showed that the recommendation

results of our approach can retrieve most of the actual functions,

which can provide considerable savings on manual extraction work

by FPA experts. Both our approach and supporting tool were ac-

cepted and applied by CMB IT department. Moreover, we discussed

the prospective aspects of our results, as well as highlighted lessons

learned and desiring researches on automated FPA approaches.
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